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Arctic Ocean

e Home to large untapped

reserves
Russia o 13% oil reserves [1]
Europe e 30% gas reserves [1]

e Marine pipelines for
transportation of fluids

Arctic Ocean

Bering Seq e Install on seabed
Greenland e Trench and/or embed
AcEke Atlantic Ocean into sea bed

o Less susceptible to

Canada man-made hazards
e Susceptible to seabed
gouging by ice masses

(Courtesy of Polar Science Center at Washington University)




Seabed scour

Motivation
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Air

motion
—

Ice ridge

e |ce features drifting in Arctic
environment.

e Come in contact with

Ocean

Seabed

seabed in shallower waters.

e Scour the seabed for several
kilometers.

Seabed Goug
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Seabed scour

Air e Scour seabed and remold
the seabed surface.

motion

- e Limited information
available about actual
process.

Ice ridge

cean
o ¢ Move at speeds of 0.1 m/s.

e Scour deformation occurs in
Seabed undrained condition.

Seabed Goug
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Seabed scour

e Gouge depths typically rarely

Front exceeding 1m in depth.
’ e Canadian Beaufort Sea
e (1970s): 2.5m [4]

(a) Tsometric View e Canadian Beaufort Sea
(1995): 0.3m [2]
Side berm Seabed e Grand Banks (2004):
T 0.3m [3]
d Front mound e Inherently a 3-dimensional
‘L problem.

Side berm

(b) Top View
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Seabed Scour and Pipe Interaction

e Trench and embed pipelines
to prevent contact with ice
ridges.

o Fill trench back with infill.

motion
—_—

Ice ridge

_____________________ e Deeper trenches more
expensive.

Seabed Pipeline
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Seabed Scour and Pipe Interaction

Air e Indirect transfer of forces to

motion pipeline

e Concern about the safety of
pipes.

e Study behavior of pipes
under extreme loading due
to ridges.

\ Tee ridge

Seabed Pipeline
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Classical Approach: Soil-Structure Interaction (SSI)

Seabed scour modeling:
e Soil modeled as a porous medium.

e Accurate model for soil.
e Includes load-history dependency behavior of soil.

o Large deformations require re-meshing.

e Computationally expensive.

e Solution projection between meshes deteriorates nonlinear
convergence.

o Difficult to parallelize.

e Requires solving a nonlinear contact problem.
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Current Approach: Fluid-Structure-Object Interaction

® Model soil as a highly viscous non-Newtonian fluid with a “yield” stress.
® Herschel-Bulkley model used to approximate soil behavior.
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Pipe Penetration
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Ridge Scour
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Ridge Scour
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Seabed scour

Forces acting on pipe vs. relative distance of ridge center to pipe
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15000 . e Extreme cases:
£ - % \ e Pipe artificially fixed in
& 10000 1y
2 w\ place.
g M e Pipe artificially allowed to
g } \ freely “float”.
0 e Pipe allowed to displace,
o \\ } attached to spring.
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Seabed scour — “floating” pipe

Forces acting on pipe vs. relative distance of ridge center to pipe Pipe deflection vs. relative distance of ridge center to pipe
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Seabed scour — Pipe with artificial spring

Forces acting on pipe vs. relative distance of ridge center to pipe Pipe deflection vs. relative distance of ridge center to pipe
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3-dimensional Scour (without pipe)
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Concluding Comments

e Approximating soil behavior using Herschel-Bulkley model
promising.
e Problem is very computationally demanding.
e ~ 36 hr for a typical 2D run on a single core.

e Projected run time of 5-10 days for 3D analysis on TACC (16
cores).

e Currently working on parametric studies.
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Application: Ridge scour

Table 1: Properties used for preliminary runs of ridge scour

Scour depth 1 m.

Ridge base width 10 m.

Ridge speed 0.2 m/s.
Attack angle 30.5 deg.
pipe diameter 24 in.

Yield stress 1765 Pa.
Yield strain-rate 0.024 1/s
soil mass density: 1400 kg/m3

water mass density: 1000 kg/m3
water dyn. viscosity: 1le-3 kg/m.s
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Ridge scour: Case | with no gravity

t=7035 t=132.35

Figure 1: Case | — Seabed perturbation (gravity off)
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